

 Initially started in 1996 by Robert McCool.

 Since 1996, Apache web server has been the most popular
HTTP server in the market on the World Wide Web.

 The Apache was the first web server architecture that was
used by the Netscape Communication Corporation.

 Apache has evolved with the years of the internet. Server is
used to support both static and dynamic pages online. Many
programming languages are supported by the Apache Server
are as follows: PHP, Perl, Python and alongside with MySql. As
of April 2008, the Apache Server serves approximately 50% of
the current web pages.

 Apache is a open source HTTP web server. It handles HTTP
Requests sent to it and then it is able to them

 Apache is Open source and is built and maintained over at
Apache.org

 Apache is comprised of Two main building Blocks with the
Latter being comprised of many other little building blocks.
The Building Blocks are the Apache Core and then the Apache
Modules that in a sense extend the Apache core. More detail
on this on next couple of slides.

 Very easy to implement and very easy to add extend its
abilities by the adding of different modules. This is why this
server has become so popular.

• As you can see
the designers of
Apache decided
to take a modular
approach so that
anyone can add to
the basic
functionality of
the server without
disturbing the
basic Core
implementation.

 A Web Server is any Machine that receives requests from a client
machine and is able to turn around process the requests and
send back a response. This is usually in terms of a Web Server to
send back a Web pages when people what to go navigate to a
webpage that is hosted on that server now one may ask how do
you send and receive the information to and from the server. This
is where HTTP begins to play a role into how this all goes about.

 HTTP Protocol: HTTP stands for Hyper-Text-Transfer-Protocol
 This is the protocol that is used in order to send and receive

information from the server. This is the protocol that the Apache
Web Server Understands and it is what it uses to send information
back to the client Machine. If you would want to get a bit more
technical on the subject the Client Machine this case the Browser
sends a HTTP.Request Object to the Server then the Server
responds back by using an HTTP.Response Object. This is the
general back and forth between the server and the browser.
Apache is made to handle all of these requests.

 Multithreaded and Multi-processed Web Servers

 When an HTTP request arrives, the Web server starts fetching
the resource as requested by the client. While the Web server
is busy fetching resources, the client computers might send
more requests. This total of requests are needed for
processing. These requests are either ignored or handled
simultaneously by the Web server.

 Web servers that ignore other requests or they will even
queue them while the servers are busy. This process is called
single-threaded Web servers. This means that they are
incapable of handling high Web server traffic. However, these
types of Web servers are ideal for Web sites that encounter
low or moderate traffic.

 Web servers that can handle simultaneous
requests, manage the requests in two ways.
Either they start a new process or they start a
new thread within a process. Web servers that
start a new process on each request are called
multi-processed Web servers, while those that
start a new thread within the main process are
called multithreaded Web servers. The is a
slight difference among those terminology.

 IIS (Internet Information Services) on the
Windows platform is an example of a
multithreaded Web server. Apache on a Unix
platform is a multi-processed Web server.

 Windows platform lack forking for server client
request interaction which put Apache on a
Unix platform more efficient. Unix is the
software for the hardware architecture of a
web based server.

 As we stated before the Client
makes an HTTP request to the
server in this case the Apache Web
server then the server handles the
server pools the connections to it,
by the basic instructions within the
Apache Core then the server sends
back a response. Many people do
not realize that they be utilizing an
Apache web server everyday since
it is the most popular web server
out right now. When you go online
and request a webpage. Most likely
an Apache Web server is
processing your request and then it
is sending you back the webpage
you requested.

 As I mentioned Before The overall overview of the Apache
Web Server is comprised of a Modular approach to the way
the system is built instead of just having the server just be
one piece of code handling everything. This in turn allows for
more robustness and allow for better customization without
getting rid of the security that is implemented within the
Apache Core.

 In order to achieve this Modular Approach the Apache
Designers decided to break down the server into two main
Components.

◦ The Apache Core: Which Handles the Basic functionality of the
Server. Such as allocating requests and maintaining and pooling
all the connections.

◦ The Apache Modules: Which are in a sense the added extensions
to the server which handle a lot of the other types of processing
the server must achieve such as doing user Authentication.

 This is what usually occurs in the Apache Core in a sense an
overview of the flow that happens in the Apache Core. This is
the Apache Core interacting with all the other components that
surround it. These are the core components of the Apache
architecture. The purpose for this was that the designers wanted
to keep every component that didn’t need each other separate
so they made them into modules. So this is what was left after
everything was left. So this is the Basic “brain” of the Apache
Web Server.

 The Apache Core is comprised of many different little
components that’s handle the Basic implementation of what a
web server should be doing.

 The core components are a series of classes that handle
specific tasks. These should not be confused with modules,
which are just add on implementations of different things
that Apache can be customized to do. Modules will be
explained more in detail in the further slides.

 The Apache Core provides us with the Main functionality of a
HTTP web server. Without it or allowing a change to it will
remove its modularity, but also remove some of the security.
This is why Modules are needed in order to extend the core
functionality of Apache.

 The core components of make up the Apache core are as
follows:

◦ http_protocol.c: This is the component that handles all of the
routines that communicate directly with the client by using the
HTTP protocol. This is the component that knows how to also
handle the socket connections through which the client connects
to the server. All data transfer is done through this component.

◦ http_main.c: this component is responsible for the startup of the
server and contains the main server loop that waits for and
accepts connections. It is also in charge of managing timeouts.

◦ http_request.c: This component handles the flow of request
processing, passing control to the modules as needed in the right
order. It is also in charge of error handling.

◦ http_core.c: the component implementing the most basic
functionality, it just bairly serves documents.

◦ alloc.c: the component that takes care of allocating resource
pools, and keeping track of them.

◦ http_config.c : this component provides functions for other
utilities, including reading configuration files and managing the
information gathered from those files (), as well as support for
virtual hosts. An important function of http_config is that it forms
the list of modules that will be called to service during different
phases of the requests that are going on within the server.

 As you can see apache has many different components within
the Core these all allow the server to be more secure and
more robust, but also due to the implementation of the
architecture raises security since anyone that wants to add
functionality to the server must do so by the use of modules.

 Before we can continue to talk about the Apache Modules we
must be able to talk about what are the request phases that
are going on within the core. In other words how does Apache
know what to do with a request that it received from the
client but also what so it does after it has received the
request and where does it go from there in order to handle
the request that was made to it. This is where request Phases
come into play.

 Modules due to the architecture of Apache do not know
directly about each other and not one module alone can
completely fill or process the request that is made to the
Apache server. Most requests are processes by sending the
information from one module back to the core then back to
another module until the request is completely handled and
then it is sent back to the client. Apache has something called
Request Phases and is handled by the HTTP_REQUEST
component of the core.

 The phases or the logic that the HTTP_REQUEST Module of
the Apache core controls are as follows:

◦ URI to filename translation;

◦ Check access based on host address, and other available
information;

◦ Get an user id from the HTTP request and validate it;

◦ Authorize the user;

◦ Determine the MIME type of the requested object (the
content type, the encoding and the language);

◦ Fix-ups (for example replace aliases by the actual path);

◦ Send the actual data back to the client;

◦ Log the request;

 Modules were made to extend/overwrite and implement the
functionality of the Apache web server.

 However modules do not directly extend each other or “know”
directly about each other.

 So in turn Modules are connected to the Apache core all the
same way.

 Modules since they do not know directly about each other
must pass all in formation back to the core and then the core
sends that information to another appropriate module
through the use of the HTTP_REQUEST component of the
Apache Core. This in turn does not allow any changing of the
stable Apache Core, but also implements a layer of security,
because no process can move on without passing the in
formation to the Core and the core checks and handles errors
through the HTTP_REQUEST component.

 Apache web server has a modular architecture with a core
component that defines the most basic functionality of a web
server and a number of modules which implements the steps
of processing a HTTP request, offering handlers for one or
more of the phases. The core is the one that accepts and
manages HTTP connections and calls the handlers in modules
in the appropriate order to service the current request by
parent and child.

 Concurrency exists only between a number of persistent
identical processes that service incoming HTTP requests on
the same port. Modules are not implemented as separate
process although it is possible to fork children or to
cooperate with other independent process to handle a phase
of processing a request.

 The functionality of Apache can be easily changed by writing
new modules which complements or replace the existing one.
The server is also highly configurable, at different levels and
modules can define their own configuration commands.

 One cool thing about Apache that makes it robust and allows
for better speed is the fact that, Apache allows for
initialization of modules Dynamically. So not every module is
started when the server starts up which really allows for a
giant speed boost.

 So what this allows is Apache to only initialize the modules
that it needs at that moment. Which allows requests to be
processed a lot faster than usual.

 Modules have something inside them that are called
Handlers.

◦ Handlers: A handler is for Apache the action that must be
performed in some phase of servicing a request. For example a
handler that requests a file must open the file then read the file
then send it to the Apache core to then be sent to the client.
Handlers are defined by the modules depending on when they are
needed to fulfill a request then the Handlers are the ones that
send back the processing from the Apache Module to the Apache
Core HTTP_REQUEST component

 Overview of the
Handler system within
an Apache Module. As
you can see the
Handler does what it
needs to do to fulfill a
request then the sends
that process back to
the HTTP_REQUEST
component of the
Apache core in order
to be sent to another
module for processing
or back to the client.

 Module Configuration

 If you are using a static configuration of Apache, choose the
modules you wish to incorporate with care. Using static mode
comes at a price — the more modules, the more memory you
use. Thus, a forked multi-processing module can have a
significant effect on the machine's memory requirements.

 Note that some items are automatically included, so you'll
need to explicitly enable and disable needed modules. Also
remember to include any third-party modules (e.g.,
authentication, PHP, or mod_perl), the Web service requires.
Use configure --help to get a list of the available options.

Apache provides access to two levels of concurrency. The
concurrent processes executing truly simultaneously, in the case
that they run on separate processors, as in the case of separate
processes running on a multitasking system. As well, if multi-
threading is supported by the operating system, a default of up to
50 threads is allowed for each process.

 Each request that the server receives is actually handled by a
copy of the http program. So rather than creating a new
instance copy when it is needed, and destroying it when a
request is finished, Apache maintains at least 5 and at most
10 inactive children at any given time. The parent process
runs a periodic check on a structure called the scoreboard,
which keeps track of all existing server processes and their
status.

 If the scoreboard lists is ever less than the minimum number
of idle servers, then the parent will spawn more.

 If the scoreboard lists more than the maximum number of
idle servers, then the parent will proceed to kill off the extra
children.

 When it receives a request, the parent process passes it along
to the next idle child on the scoreboard. Then the parent
goes back to listening for the next request.

 When doing the parent and child request there is a limit
which by default is set to 256 of the total number request at
one time. The default settings was programmed by the
creators for the server was to pick in order to keep the
scoreboard file small enough so that it can be scanned by the
processes without causing overhead concerns.

 Since the number of requests that can be processed at any
one time is limited by the number of processes that can exist,
there is a queue provided for waiting requests. The queue
waiting list was mentioned to be when the parent passes a
request to a child, which was idle, then the parent returns to
receive next request. The maximum number of pending
requests that can sit on the queue can reach somewhere in
the 400-600.

 Apache server architecture was designed to maximize one
connection. The uses the persistent connection to allow
multiple requests from a client to be handled by one
connection, rather than opening and closing a connection for
each request. The default maximum number of requests
allowed over one connection is 100. The connection is closed
by a timeout.

Security Perspective

 Hopefully with the presentation of the Apache server. You
can now know what multi-processed Web servers are and
how Apache qualifies to be one.

 Another important aspect that is worth discussing is how
processes work. Two types of processes are invoked, parent
and child. The parent process is the main process from which
several child processes are invoked.

 Now how does this imply to security right?

 Whenever a request is sent to the Apache Web server, the
parent process receives the request. Then the parent process
forwards the request to one of the child processes. The child
process then handles the request by responding to it. This
behavior is supported for a valid reason: security.

 The root user (SuperUser has all privileges like an Admin)
initiates the parent process of the Web server in UNIX
systems. The root user, is the most powerful user on the UNIX
system. For security reasons, the parent process doesn't
directly process the requests sent by the clients.

 For example, if a client sends a request with malicious
intentions and the parent process handles the request. The
parent process will being run as a root user (SupperUser) will
have all necessary rights to perform any operation on the
computer, thereby making the system server vulnerable.
However, if the request is forwarded to a process that has
restricted permissions on the computer, no harm can be done
which is handled in the child process. This is because child
processes are run as users with restricted privileges.

 Providing any kind of system information to a hacker could
potentially provide a hacker with the ammunition they need
to break into your server. The less a hacker knows about the
configuration of a system, the harder it is to break into. The
issue that many business uses Apache server to host
websites.

 One of the most common exploits used by hackers is to "take
over" a service running on the server and use it for their own
purposes. For example, gaining access to a mail application
via an HTML form-based script. Hacker would use the mail
server to send out spam or acquire confidential user
information.

 While not a direct security threat, a poorly written application
can use up a system's available resources to the point where
it becomes almost completely unresponsive.

 Safe programming layer to prevent buffer overrun exploits
and sandboxing to limit resource consumption

 Efficient output data stream buffering

 Apache compatible configuration

 Extensive logging and debug trace

 The apache server architecture was design to be highly
customizable for business programmer to modify it for their
needs.

 The configuration files flexible permits to customization of
the modules of the apache server. Modules can recognize
from configuration files and will be called when such
commands are found through the proper procedure.

 The Apache server has a fully functional architect with an
intension for security from the root user privileges (Super
user).

 The server asks the web browser of the client for the user and
password to access the server. For example, Internet Mozilla
Firefox web browser has a feature to store username and
password. The risk of the server automatically ask for the
password, anyone can access the programmers account once
on the client’s machine.

 password is send over the network not encrypted but
"unencoded"

 password is not visible in the clear, but can easily be decoded
by anyone who happens to catch the right network packet
(“sniffers in action”)

 this method of authentication is as safe as telnet-style
username and password security

 The reason for discussing the process of caching is because,
by definition, cache is the temporary storage of frequently
accessed data in higher speed media (such as SRAM or RAM)
for more efficient retrieval of data through a process. Web
caching stores frequently used objects closer to the client
through browser, proxy, or server caches. By storing string
objects closer to your users in order for the user to avoid
making several same trip to access the server. By doing this,
this reduce bandwidth consumption, server load, and most
importantly, latency.

 The caching method and process is not just for static sites,
but as mentioned before, even dynamic sites can benefit from
caching. Streaming video request was an issue Graphics and
multimedia typically don't change as frequently as XHTML
files. Graphics that seldom change like logos, headers, and
navigation can be given longer expiration times while
resources that change more frequently like XHTML and XML
files can be given shorter expiration times.

 There are two main stages in mod_cache that can occur in the
lifetime of a request. A mod_cache is a terminology that
represents the URL mapping module, which means that if a
URL has been cached, and the cached version of that URL will
not expired, the request will be served directly by mod_cache.

 When caching is locally generating content to ensure that
UseCanonicalName is set to ON can dramatically improve the
ratio of cache hits. The hostname of the virtual-host serving
the content forms a part of the cache key. With the setting set
to (ON) on the virtual-hosts with multiple server names or
aliases will not produce differently cached entities, but
instead, the content will be cached as per the canonical
hostname reason for that is that caching is performed within
the URL to filename translation phase. Cached documents will
only be served in response to URL requests.

 Apache

◦ architecture, modules and handlers

◦ directory structure; configuration files & directives; running

◦ access control; authentication

◦ Passing Data; Security

◦ cache control

